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for Globally Optimal Cell Segmentation

using Deformable Shape Models

Leonid Kostrykin and Karl Rohr

Abstract—Cell nuclei segmentation is challenging due to shape variation and closely clustered or partially overlapping objects. Most

previous methods are not globally optimal, limited to elliptical models, or are computationally expensive. In this work, we introduce a

globally optimal approach based on deformable shape models and global energy minimization for cell nuclei segmentation and cluster

splitting. We propose an implicit parameterization of deformable shape models and show that it leads to a convex energy. Convex

energy minimization yields the global solution independently of the initialization, is fast, and robust. To jointly perform cell nuclei

segmentation and cluster splitting, we developed a novel iterative global energy minimization method, which leverages the inherent

property of superadditivity of the convex energy. This property exploits the lower bound of the energy of the union of the models and

improves the computational efficiency. Our method provably determines a solution close to global optimality. In addition, we derive a

closed-form solution of the proposed global minimization based on the superadditivity property for non-clustered cell nuclei. We

evaluated our method using fluorescence microscopy images of five different cell types comprising various challenges, and performed

a quantitative comparison with previous methods. Our method achieved state-of-the-art or improved performance.

Index Terms—Segmentation, cell cluster splitting, object representation, image models, surface fitting, global optimization

F

1 INTRODUCTION

A central task in many biological studies is the segmen-
tation of cell nuclei in microscopy images, i.e. the

identification of image regions corresponding to individual
cell nuclei. Cell nuclei segmentation is important, for exam-
ple, to study cellular movement or proliferation, but also
to determine regions of interest to quantify other cellular
structures. However, cell nuclei segmentation is challenging
for many reasons such as irregular shapes, closely clustered
or partially overlapping objects, and imaging artifacts (e.g.,
image noise, image blur, intensity inhomogeneities).

Fluorescence microscopy is one of the most important
microscopy methods today (e.g., [1]). With this method,
different fluorophores (chemical compounds) are used to
label different types of cellular structures (e.g., cell nuclei,
cytoplasms, mitochondria). Depending on the wavelength
of the exciting light, the fluorescence intensities are captured
in different image channels. Usually, the fluorescence of cell
nuclei is captured in a single image channel. Cell nuclei
typically appear as regions with bright intensity.

1.1 Related Work

In the recent years, convolutional neural networks (CNN) have
been successfully used for cell segmentation in microscopy
images (e.g., [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]).
U-Net [2] and Mask R-CNN [13] are the two predominant
CNN architectures. To improve the performance, ensembles
of multiple CNNs [5], [7], higher-dimensional embeddings

• The authors are with the Biomedical Computer Vision Group, BioQuant,
IPMB, Heidelberg University, Im Neuenheimer Feld 267, 69120 Hei-
delberg, Germany. E-mail: leonid.kostrykin@bioquant.uni-heidelberg.de,
k.rohr@uni-heidelberg.de

[4], [8], focal loss [10], and CNNs in conjunction with
graphical models [3], [5], [9] or gradient flow fields [11],
[14] were proposed. In [9], Bayesian polytrees with learned
deep features and globally optimal inference were used.
Globally optimal approaches are intrinsically robust since
they guarantee finding the best admissible solution. How-
ever, training deep CNNs generally requires large amount of
manually annotated data, and manual annotation of pixel-
based segmentation masks is tedious. To cope with this,
synthetic training data [6] and higher-level annotations for
classification of image regions [12] were used. However,
training deep neural networks is computationally expensive
in general. In addition, it was shown that neural networks
are prone to adversarial perturbations (small intensity fluc-
tuations in the input images) [15], universal perturbations
(e.g., random noise, geometric transformations) [16], and
misannotated image data (label noise) when using deep
high-capacity models [17].

Another popular class of segmentation methods are
model-based approaches, where a model of an object is fitted
to the image data via energy minimization. Often, object con-
tours are represented by control points (e.g., [18], [19], [20])
or level sets of functions in variational frameworks (e.g., [21],
[22], [23]). However, the initialization of the control points
or the level set functions is crucial due to local minima of the
energies. To overcome this, [24] proposed a globally optimal
approach for cell segmentation based on convex energy
minimization [25], [26]. Due to the convexity property, only
global energy minima exist and thus minimization does not
depend on the initialization.

A central problem in cell segmentation is coping with
closely clustered or partially overlapping objects. To address
this, methods that exploit shape information have been
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introduced. These shape-based methods often perform seg-
mentation and separation of individual objects (cell cluster
splitting) consecutively. There are two main schemes:

1) In the first scheme, image binarization and morpho-
logical analysis are performed to delineate individual
objects (e.g., [27], [28], [29], [30], [31]). The approach in
[27] uses thresholding [32] for binarization, followed by
morphological analysis and clustering to delineate indi-
vidual cell nuclei, and applies a random walker method
[33] for the final segmentation. In [28], level sets were
employed for binarization and a shortest-path method
to delineate individual objects, which were identified in
the binarized image. In [29], thresholding was used for
binarization and a Markov point process (MPP) with
circular models for cluster splitting. A related approach
was introduced in [30], but using elliptical models and
expectation maximization instead of MPP, which was
later extended to better cope with partially overlapping
objects [31]. A disadvantage of these approaches is
that shape and intensity information are only used in
consecutive steps, but not jointly. Individual objects are
identified using only the initial binarized image.

2) In the second scheme, prior object detection is performed
to identify individual cells before segmentation (e.g.,
[34], [35], [36], [37]). For example, [34] employed blob
detection to localize individual cell nuclei, and sub-
sequently used graph cuts [38] in conjunction with
a shape prior for the final segmentation. Connected
component analysis [35] and random decision forests
[36] were also proposed for initial detection of individ-
ual objects, using level sets with shape priors for the
final segmentation. Blob detection in conjunction with
convex programming and elliptical models was used in
[37]. These methods jointly exploit shape and intensity
information, but they heavily depend on the result of
the initial object detection, which determines how cell
clusters are eventually split.

Shape-based methods without requiring prior object detection
have also been proposed. These methods use variational
level sets and shape priors (e.g., [39], [40], [41], [42]). Statistical
shape priors have been used to segment overlapping cells in
histological images, and were initialized by the watershed
transform [39] or a variety of features including second-
order image statistics [41], [42]. In [40], [42], the sparsity
of shape representations in level set models was exploited
for faster energy minimization. However, these methods do
not yield a globally optimal solution.

Instead of using shape priors in variational level set
methods, shape models based on either explicit (e.g., [43],
[44], [45]) or implicit parameterizations (e.g., [46]) have
been proposed, using stochastic [43], [45] or combinatorial
optimization [44], [46] for energy minimization and model
fitting. In [43], an overcomplete set of points was used,
each corresponding to a possible object detection, and then
explicitly parameterized elliptical models and an MPP were
employed for the final segmentation. In [44], object detection
was replaced by an MPP, and graph cuts [47] were used for
optimization. A related approach using simulated annealing
instead of graph cuts was described in [45]. In principle, this
scheme converges to a global solution, but it is computation-

ally expensive and requires careful calibration of the cooling
parameters. Compared to explicitly parameterized models,
implicit parameterizations have analytic and algorithmic
advantages (e.g., easier representation of closed curves,
convenient representation by matrix-vector multiplication).
In particular, implicitly defined shape models are computa-
tionally advantageous since energy minimization can often
be performed by convex optimization. In our previous work
[46], we described a globally optimal approach based on
implicit parameterizations and convex optimization for cell
segmentation, which, however, is limited to elliptical mod-
els. None of the methods described above used implicitly
defined deformable shape models and global optimization
for cell segmentation.

1.2 Contributions

In this work, we introduce a new globally optimal ap-
proach for cell segmentation in microscopy images, which
uses implicitly parameterized deformable shape models. Our
approach intrinsically copes with non-elliptical shapes and
jointly exploits shape and intensity information by convex
energy minimization. Neither prior image binarization nor
prior object detection are required. The approach is based
on three main contributions:

1) We propose an implicit parameterization of deformable
shape models for cell segmentation and show that this
parameterization leads to a convex energy for model
fitting. Minimization of the convex energy determines
the global solution independently of the initialization,
is fast, and robust.

2) We introduce a novel iterative global energy minimiza-
tion method, which jointly performs cell segmentation
and cluster splitting. The method exploits the inherent
superadditivity property, simultaneously fits multiple
models to the image data, and provably determines a
solution close to global optimality. The superadditivity
property leverages the lower bound of the energy of
the union of models and improves the computational
efficiency.

3) We also derive a closed-form solution of the global
minimization for non-clustered cell nuclei, which is
based on the superadditivity property. This further
improves the efficiency since iterative minimization is
not required.

The core idea of our approach is to consider the infimum
of the convex energy for a deformable shape model as
a set energy function, i.e. a function of the set of image
regions where model fitting is performed. We determine
optimal regions for fitting and show that for these regions
the computation of set energy functions amounts to convex
energy minimization. To perform joint cell segmentation and
cluster splitting, we show that the set energy functions
are superadditive for disjoint image regions. This structural
property is established via the set-packing polytope and means
that optimal image regions can be determined by only con-
sidering a subset of all possible image regions. We exploit
the inherent property of superadditivity to develop a novel
and computationally efficient global energy minimization
method, which iteratively determines the optimal regions. In
addition, we derive a closed-form solution of the proposed

https://ieeexplore.ieee.org/document/9804854


A
cc

ep
te

d
m

an
u

sc
ri

p
t

A
cc

ep
te

d
m

an
u

sc
ri

p
t

A
cc

ep
te

d
m

an
u

sc
ri

p
t

L. Kostrykin and K. Rohr, “Superadditivity and Convex Optimization for Globally Optimal Cell Segmentation Using Deformable Shape
Models,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, doi: 10.1109/TPAMI.2022.3185583.
Copyright ©2022 IEEE, https://ieeexplore.ieee.org/document/9804854

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

global minimization, which directly determines optimal re-
gions for non-clustered cell nuclei (without requiring iter-
ation). Our energy minimization method does not suffer
from local minima and scale-related hyperparameters are
automatically determined to facilitate application to image
data with different scales. The proposed approach intrinsi-
cally copes with intensity inhomogeneities and partial object
overlap since shape and intensity information are used
jointly. In contrast to our previous work [46], which was
limited to elliptical models, the proposed approach copes
with more general shapes by using deformable models, is
more efficient since it exploits the property of superadditiv-
ity for energy minimization, and is scale invariant. None
of the previous methods mentioned above exploited the
superadditivity property. Our approach is denoted as Su-
perDSM since it leverages superadditivity and deformable
shape models. To the best of our knowledge, the proposed
approach is the first that combines convex optimization with
deformable shape models for cell segmentation.

We have evaluated our approach using fluorescence
microscopy datasets of five different cell types comprising
various challenges, including publicly available benchmark
datasets, and performed a quantitative comparison with
previous methods. It turns out that the proposed approach
generally yields competitive or improved results. In addi-
tion, we also demonstrate the applicability of our approach
to another imaging modality, namely histopathology images
with H&E-stained cell nuclei.

This paper is organized as follows. Section 2 introduces
the implicitly parameterized deformable shape models, the
corresponding convex energy, and the global energy mini-
mization method which exploits the superadditivity prop-
erty. Section 3 describes the proposed cell segmentation
approach including the pre-processing scheme, the auto-
matic choice of hyperparameters for scale invariance, and
the post-processing scheme. Section 4 provides experimen-
tal results and a comparison with previous methods. We
discuss the results of our work in Section 5.

2 SUPERADDITIVITY AND CONVEX OPTIMIZATION

FOR DEFORMABLE SHAPE MODELS

An overview of the proposed SuperDSM approach for
cell nuclei segmentation using deformable shape models is
shown in Fig. 1. The approach consists of four main steps: 1)
Pre-processing (scale estimation, determination of intensity
offsets, and detection of regions of possibly clustered ob-
jects), 2) coarse-to-fine region analysis (computation of the
universe of image regions and the corresponding adjacency
graph), 3) global energy minimization using deformable
shape models, and 4) post-processing. Step 3 is most im-
portant and concerns our main contributions.

Below, we describe the proposed global energy mini-
mization method. We first introduce the implicitly param-
eterized deformable models (Section 2.1) and the corre-
sponding convex energy (Section 2.2). Then, we describe
the superadditive set energy functions, the iterative method
for cell segmentation and cluster splitting using global en-
ergy minimization, and the closed-form solution for non-
clustered cell nuclei (Section 2.3).

(a) Original image
(contrast-enhanced)

(c) Universe � of example regions 
marked orange in (b) and

corresponding adjacency graph

(d) Segmentation result
(green contours)

0

-0.8

+1.0

(b) Regions of possibly clustered objects

3) Global energy
minimization

– Iterative method
– Closed-form

solution

2) Coarse-to-fine
region analysis

1) Pre-processing

– Scale estimation
– Intensity offsets
– Region detection

4) Post-processing

Fig. 1. Overview of our SuperDSM method for cell nuclei segmentation.

2.1 Implicit Shape Parameterization

We use the zero-level set of a model function to represent
the shape of an object. Our model function consists of a
polynomial and local deformations. We use a second-order
polynomial s : Ω → R, which maps each image point x =
(x1, x2) to a real value, where x ∈ Ω and Ω ⊂ R

2 are all
points of an image. We employ the parameterization

s (x; θ) = 〈fx, θ〉 , θ ∈ R
6,

f>x =
[

x21 x22 2x1x2 x1 x2 1
]

,
(1)

where θ are the polynomial parameters. The zero-level set
of Eq. (1) corresponds to a conic section, which is limited
to elliptical shapes and a few degenerated shapes (e.g.,
hyperbolic). We consider an image region ω ⊆ Ω, i.e. a non-
empty subset of the image points Ω in an arbitrary but fixed
order ω =

{

x(1), . . . , x(#ω)
}

, where # denotes cardinality.
Then,

Sω (θ, 0) = F>
ω θ, where Fω =

[

fx(1) · · · fx(#ω)

]

, (2)

describes a polynomial surface within the image region ω,
where 0 is a vector of zeros with arbitrary dimension (used
for notational consistency). The parameterization in Eq. (1)
was used in our previous work [46] to describe elliptical
shapes.

To represent more general non-elliptical shapes, we aug-
ment the polynomial surface by integrating local deforma-
tions. We represent the deformations by the smooth per-
turbation term Gωξ and define an implicit deformable shape
model in an image region ω as

Sω (θ, ξ) = F>
ω θ +Gωξ, ξ ∈ R

#Ω. (3)

The #ω ×#Ω matrix Gω is a block Toeplitz matrix, where
each row represents a Gaussian function with standard
deviation σG centered at the image points x(1), . . . , x(#ω).
The term Gωξ thus corresponds to a linear combination of
Gaussian functions, and ξ are the deformation parameters
(weights of the Gaussian functions). The deformable model
in Eq. (3) includes the elliptical model in Eq. (2) as a special
case for ξ = 0. The implicit parameterization in Eq. (3)
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has the advantage that it is linear in the model parameters
θ, ξ, which leads to a convex energy. Thus, minimization
yields the global solution and can be performed efficiently
(Section 2.2).

Any pair of model parameters θ, ξ induces two disjoint
image regions, that are the zero-sublevel set I−S (θ, ξ) of the
deformable shape model Sω (θ, ξ) |ω={x} as a function of

x ∈ Ω and its corresponding zero-superlevel set I+S (θ, ξ),

I−S (θ, ξ) =
{

x ∈ Ω : Sω (θ, ξ) |ω={x} < 0
}

,

I+S (θ, ξ) =
{

x ∈ Ω : Sω (θ, ξ) |ω={x} > 0
}

.
(4)

These two regions correspond to the interior and exterior of
the model, respectively.

2.2 Convex Energy Minimization

We use gx ∈ R to denote the image intensity at an image
point x ∈ Ω. Given the image intensities gx(1) , . . . , gx(#ω) ,
we assume local intensity offsets τx(1) , . . . , τx(#ω) so that

Y >
ω =

[

gx(1) − τx(1) . . . gx(#ω) − τx(#ω)

]

(5)

defines a coarse subdivision of the image into the two sets
of points for the background Ωbg =

{

x ∈ Ω : Yω|ω={x} < 0
}

and the foreground Ωfg =
{

x ∈ Ω : Yω|ω={x} > 0
}

. The
intuition is that gx − τx < 0 (i.e. x ∈ Ωbg) indicates that an
image point x belongs to the background, and gx − τx > 0
(i.e. x ∈ Ωfg) indicates that an image point x belongs to
the foreground. Since cell nuclei in fluorescence microscopy
images correspond to bright intensity regions compared
to the background, the offsets τx can be determined, for
example, by Gaussian filtering. In our implementation, we
have developed a more sophisticated two-step scheme,
which interpolates between Gaussian filtering of the original
and clipped intensity values to better cope with boundary
points, and is more robust to intensity inhomogeneities (for
details see Supplemental Material 1).

To fit the implicitly parameterized deformable shape
model to the image data, we seek to determine the model
parameters θ and ξ so that Ωfg ≈ I+S (θ, ξ) and Ωbg ≈
I−S (θ, ξ). More formally, we minimize the cardinality of the
intersections Ωfg ∩ I−S (θ, ξ) and Ωbg ∩ I+S (θ, ξ),

inf
θ,ξ
ψω (θ, ξ) , ψω (θ, ξ) = `ω (θ, ξ) + α · ‖ξ‖1 , (6)

where `ω (θ, ξ) is the cardinality of the intersections, using
an L1 regularization for the deformation parameters ξ.
Direct minimization of the cardinality corresponds to the
minimization of the 0/1 loss. However, this is challenging
since the 0/1 loss is neither smooth nor convex. We thus use
the logistic loss as a surrogate loss function (e.g., [48]) for the
cardinality of the intersections, i.e.

`ω (θ, ξ) = 1
>
#ω ln (1 + exp (−Yω · Sω (θ, ξ))) , (7)

where “ln”, “exp”, “·” are defined component-wise, and
1#ω is a vector of ones with dimension #ω. Using the
logistic loss is advantageous since Eq. (7) is convex. Another
advantage of Eq. (7) is that the image intensities are directly
exploited via Yω and image binarization is not required. The
parameter α ≥ 0 in Eq. (6) governs the regularization of the
deformations. Example segmentation results for different
values of α for an image section of U2OS cells are shown

Fig. 2. Example segmentation results for different values of the regular-
ization parameter α. Left to right: Original image section, segmentation
results using α = 0.001, α = 0.002, α = 0.003, α = 0.004, α = 0.005.

in Fig. 2. The section shows a single cell nucleus (according
to the ground truth from [49]) and has a size of 136 × 108
pixels. Increasing α leads to a smoother segmentation result.

We solve Eq. (6) which incorporates the convex loss
function in Eq. (7) using a Newtonian solver [50] which is
a fast numerical second-order method. Consecutive New-
ton steps determine the globally optimal solution indepen-
dently of the initialization for θ and ξ since the problem
is unconstrained and convex (Property 1 in Supplemental
Material 2).

2.3 Global Optimization based on Set Energy Func-

tions and Superadditivity

The implicit deformable shape model introduced above
represents a single object. For globally optimal model fitting
for an entire image, we exploit that linearly parameterized
single-object models such as Eq. (2) and Eq. (3) naturally
generalize to the multi-object case [46]. Let the set U be
a universe of disjoint image regions, where each region
comprises image points of at most one single object (and
the image background). The objective then is to determine
a low-cardinality and minimal-energy family X of sets of the
regions U , subject to the constraint that

⋃

X = U . The
energy of a set X ⊆ U of image regions is given by the
solution of Eq. (6) for ω = ω̃ (X) ∪ Ωbg,

inf
θ,ξ
ψω̃(X)∪Ωbg

(θ, ξ) , where ω̃ (X) =
⋃

X (8)

is an image region defined by the set X of disjoint image re-
gions, and

⋃

X are all image points of the set X . In [46], this
result was used for elliptical models, but determining the
optimal family X required the computation of all admissi-
ble sets using prior assumptions (e.g., maximum cardinality
of U ) to maintain computational tractability. In this work,
we exploit the result for deformable shape models and for
the property of superadditivity. Superadditivity denotes the
property that the energy of any set X is lower-bounded
by the sum of energies of its disjoint subsets. This has the
advantage that the optimal family X can be determined by
only considering a subset of all possible image regions. The
proposed global optimization method for deformable shape
models is far more sophisticated than the one for elliptical
models, since we automatically confine the computations
to a meaningful subset of the admissible sets, using the
analytical property of superadditivity instead of requiring
prior assumptions.

The image regions U are denoted atomic image regions,
since any set of image regions X ⊆ U is composed of
these regions. Below, we first formally define the universe
U of atomic image regions, formulate Eq. (8) as a set energy
function, and derive its property of superadditivity (Sec-
tion 2.3.1). We then exploit this property to formally define
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a suitable optimization objective for the optimal solution
X (Section 2.3.2). Minimization of the obtained objective is
NP-hard and thus computationally challenging. However,
we further leverage superadditivity and convexity to de-
compose the challenging optimization problem into easily
solvable sub-problems (Section 2.3.3).

2.3.1 Set energy functions and superadditivity

Let E ⊆ U × U represent adjacent image regions, i.e. {u, v}
∈ E if and only if u is adjacent to v, using the following
definition of adjacency:

Definition 1. Two atomic regions u, v ∈ U are considered
adjacent if and only if Ωfg ∩ (u ∪ v) contains a path between
u and v. Π ⊆ U × U represents the connected regions (i.e.
{u, v} ∈ Π if and only if the adjacency graph G = (U, E)
contains a path between the regions u and v).

Fig. 1(c) shows an example universe of atomic image regions
(black lines) and the corresponding adjacency graph (green
lines) for two connected components.

In order to formally introduce set energy functions (see
below), we first define the family of all connected subsets of
U with cardinality k or less,

Pk (U) = {X ⊆ U |#X ≤ k,X ×X ⊆ Π} . (9)

In the following, we use P (U) = P#U (U) as a short form.
The objective function in Eq. (8) is defined by the energy

ψω in Eq. (6) for the image region ω = ω̃ (X) ∪ Ωbg. Image
points within large regions of image background generally
yield low energy values and are thus negligible. Since the
set Ωbg mostly contains such image points, we have

inf
θ,ξ
ψω̃(X)∪Ωbg

(θ, ξ) ≈ inf
θ,ξ
ψω̃(X) (θ, ξ) . (10)

This gives rise to the set energy function c′ : P (U)→ R≥0,

c′ (X) = inf
θ,ξ
ψω̃(X) (θ, ξ) . (11)

Below, we describe a relation of Eq. (11) to the set-packing
polytope, which we use to establish the property of super-
additivity.

For any family of sets X1, . . . , Xm ⊆ U , the set
P (X1, . . . , Xm) of solutions η ∈ R

m
≥0 for the inequality

∑

k∈[m]

[u ∈ Xk] · ηk ≤ 1 for all u ∈ U, (12)

is a set-packing polytope (the polytope associated with the
max set-packing problem and its linear relaxation, e.g., [51]),
using the Iverson brackets defined by [statement] = {1 if
statement is true; 0 else}. Then, any family of sets X1, . . . ,
Xm and associated weights η ∈ P (X1, . . . , Xm) yields a
lower bound of the set energy function in Eq. (11) for the set
X1 ∪ · · · ∪Xm (Property 3 in Supplemental Material 2. The
proof uses Property 2 which states a similar relation for the
energy ψω .)

When the sets X1, . . . , Xm are disjoint, a vector of ones
with dimension m is always contained in P (X1, . . . , Xm)
and thus the set energy function c′ is superadditive,

c′ (X1) + · · ·+ c′ (Xm) ≤ c′ (X1 ∪ · · · ∪Xm) . (13)

Thus, for any two disjoint, non-empty sets A,B ⊂ U ,
the sum of their energies c′ (A) + c′ (B) is a lower bound

of the energy of their union, c′ (A ∪B). This means that
the energy c′ of a set can be directly deduced (without
optimization). Moreover, the singleton set {u} (i.e. set with
exactly one element) of any element u ∈ U is the set with
the lowest energy among all those containing the element u.
In terms of energy minimization, this means that any image
is best fitted by the singleton sets of U . This likely leads
to over-segmentation and is thus not well-suited. Below,
we describe an extension of the set energy functions which
avoids over-segmentation.

2.3.2 Extended Set Energy Functions and Optimization

Objective

To obtain a meaningful segmentation result and avoid over-
segmentation, we extend the set energy functions in Eq. (11).
We add the constant term β ≥ 0 and define the extended set
energy function c : P (U)→ R≥0,

c (X) = c′ (X) + β. (14)

In contrast to the original set energies c′, the extended ener-
gies c (A) + c (B) of two disjoint, non-empty sets A,B ⊂ U
can actually be higher than the extended energy of their
union, c (A ∪B), since c (A)+ c (B)− c (A ∪B) ≤ β due to
Eq. (13). Thus, β is the maximum allowed energy difference
of merging A and B. Only if the energy c′ (A ∪B) exceeds
c′ (A)+ c′ (B) by less than β, merging A and B is beneficial
in terms of energy minimization using the extended set
energy c. Merging A and B corresponds to using a single
deformable shape model for the union A∪B instead of two
separate shape models for A and B.

Using linear program (LP) relaxation of the max-weight
set-packing problem (e.g., [51])

MSPLP (S ) = max
η1,...,ηm

∑

k∈[m]

ηk · c′ (Xk) , S = X1, . . . , Xm

s.t. η ∈ P (S ), (15)

we obtain the following lower bound of the extended set
energy c (X):

Property 4. Given a setX ⊂ U with cardinality #X = k+1 ≥
2, the rhs of

c (X) ≥ MSPLP (Pk (X)) + β (16)

is a lower bound of its extended set energy (lhs).

Proof. See Supplemental Material 2.

To define the optimization objective for global energy
minimization, we consider the overall minimal energy for
a subset of regions X ⊆ P (U), which covers the whole
universe U . Using the extended set energy from Eq. (14),
this formally corresponds to MSC(P (U)) where

MSC (S ) = min
X ⊆S

∑

X∈X

c (X) s.t.
⋃

S =
⋃

X , (17)

which is an instance of the min-weight set-cover problem (e.g.,
[51]). Computation of MSC(P (U)) is challenging for two
reasons. First, Eq. (17) is NP-hard. To cope with this, we use
an approximation algorithm which determines the global
solution within a tight approximation ratio (see Section 3.3).
Second, P (U) has a potentially large cardinality. We address
this by avoiding the computation of the whole family P (U),
as described below.

https://ieeexplore.ieee.org/document/9804854


A
cc

ep
te

d
m

an
u

sc
ri

p
t

A
cc

ep
te

d
m

an
u

sc
ri

p
t

A
cc

ep
te

d
m

an
u

sc
ri

p
t

L. Kostrykin and K. Rohr, “Superadditivity and Convex Optimization for Globally Optimal Cell Segmentation Using Deformable Shape
Models,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, doi: 10.1109/TPAMI.2022.3185583.
Copyright ©2022 IEEE, https://ieeexplore.ieee.org/document/9804854

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

2.3.3 Global Optimization Scheme

To cope with the potentially large cardinality of P (U),
we are interested in a criterion for a set X ⊆ U which
guarantees that the set X is negligible, i.e. MSC(P (U)) =
MSC(P (U) \ {X}). Excluding such sets ultimately yields a
subset U ⊆ P (U), which suffices MSC(U ) = MSC(P (U))
but is of lower cardinality than P (U). We derive such
a criterion from the following lower bound of the global
optimization objective:

Property 5. LetX ⊆ U be a set with cardinality #X = k+1 ≥
2. If X or a superset of X are not negligible, i.e.

∃Y : X ⊆ Y ⊆ U ∧MSC (P (U)) < MSC (P (U) \ {Y }) ,
(18a)

then the lhs of

c (X) +
∑

u∈U\X

c′ ({u}) ≤ MSC (P (U)) (18b)

is a lower bound of the global optimization objective (rhs).

Proof. See Supplemental Material 2.

In addition to the lower bound, the monotonicity
Pk (U) ⊆ Pk+1 (U) yields upper bounds of MSC (P (U)),

MSC (P (U)) =

MSC (P#U (U)) ≤ . . . ≤ MSC (P1 (U))

=
∑

u∈U

c ({u}).
(19)

By combining Property 5 for lower bounds with the up-
per bounds from Eq. (19), we obtain the following criterion
to identify negligible sets:

Criterion 1 (Negligible sets). Given a set X ⊆ U with
cardinality #X = k + 1 ≥ 2, if

c (X) > MSC (Pk (U))−
∑

u∈U\X

c′ ({u}) , (20a)

then X and its supersets are negligible, i.e.

MSC (P (U)) = MSC (P (U) \ {Y }) (20b)

for all Y : X ⊆ Y ⊆ U .

Proof. See Supplemental Material 2.

To compute MSC (P (U)), we consider the sequence
U1, . . . ,U#U , where each subset Uk ⊆ Pk (U) is obtained
by excluding sets according to Criterion 1. This procedure
guarantees MSC(U#U ) = MSC(P (U)) due to Eq. (20b) and
is formally described in Algorithm 1. First, Property 4 and
Property 5 are used to determine a lower bound cmin (line 9)
and an upper bound cmax (line 8) of the extended set energy
c (X). The set is excluded if the lower bound exceeds the up-
per bound (line 10). Otherwise, c (X) is computed (line 11)
and the set X is excluded if c (X) exceeds the upper bound
cmax (line 12). The lower and upper bounds cmin and cmax

are tightened from iteration to iteration (due to monotonic
increase of the family U and monotonic decrease of the
variable value). Thus, if a set X is excluded, all supersets
Y ⊃ X are also excluded in subsequent iterations and
computation of c (Y ) is not required due to Property 4. The
number of iterations is upper-bounded by the cardinality

Algorithm 1: Iterative solution of MSC (P (U)).

input: Adjacency graph G = (U, E)
1 iter1← {{u}|u ∈ U}; // initialize U1 = P1 (U)

2 U ← iter1; // sets for which c (X) was computed

3 do // iterate U = U1,U2, . . .

4 value← MSC (U ); // optimization objective

5 iter0← family of all sets X ∪ {u} where
X ∈ iter1, u ∈ U \X , and ∃v ∈ X, {u, v} ∈ E ;

6 iter1← {};
7 for X ∈ iter0 do
8 cmax ← value−∑

u∈U\X c′ ({u}); // Property 5

9 cmin ← β + MSPLP {Y ∈ U |Y ⊂ X}; // Property 4

10 if cmin ≤ cmax then // Criterion 1

11 compute c (X) and insert X into U ;
12 if c (X) ≤ cmax then // Criterion 1

13 iter1← iter1 ∪ {X};

14 until #iter1 = 0;
15 return family X corresponding to “value”, cf. Eq. (17)

of the universe. An example run-through of Algorithm 1 is
given in Supplemental Material 3.

Compared to classically tree-based branch-and-bound
schemes, Algorithm 1 builds multiple trees H along the
edges of the adjacency graph G = (U, E), each rooted in the
singleton sets of U . This corresponds to the directed acyclic
graph (DAG)

H = (U , E ′) , where (X,Y ) ∈ E ′ iff X ⊂ Y . (21)

The graphH comprises only the subset U of the admissible
nodes P (U). Also, in contrast to previous DAG-based ap-
proaches (e.g., [9], [52]), the segmentation is not encoded in
our graph structure. These two properties naturally lead to
comparably shallow graphs, thus, neither heuristic pruning
[52] nor prior assumptions [46] are required to obtain graphs
of computationally tractable size.

Algorithm 1 can be interpreted that it excludes sets
corresponding to falsely merged objects (see the example
in Supplemental Material 3). However, if the whole universe
U corresponds to a single object, i.e. if c (U) = MSC (P (U)),
then no falsely merged objects can possibly occur. In this
case, Eq. (18b) is fulfilled for any X ⊆ U due to Eq. (13), and
the computational cost (cardinality of U ) grows to #P (U).
To avoid this, we introduce Criterion 2, which identifies this
case a priori and provides a closed-form solution:

Criterion 2 (Closed-form solution of MSC (P (U))). If
c (U) ≤ 2β +

∑

u∈U c
′ ({u}), then MSC (P (U)) = c (U).

Proof. See Supplemental Material 2.

Criterion 2 is applied for direct segmentation of non-clus-
tered cell nuclei without using the iterative Algorithm 1 (see
Section 3).

The iterative Algorithm 1 is computationally more ef-
ficient for small values of β (Criterion 1 then excludes
more sets). On the other hand, the closed-form solution
(Criterion 2) is more efficient for large values of β (since
in this case the margin of the inequality in Criterion 2 is
larger).

https://ieeexplore.ieee.org/document/9804854
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3 CELL NUCLEI SEGMENTATION USING SUPER-

ADDITIVITY, CONVEX OPTIMIZATION, AND DE-

FORMABLE SHAPE MODELS

The proposed SuperDSM method for cell nuclei segmenta-
tion consists of four main steps (cf. Fig. 1). First, an image is
pre-processed to estimate the scale of the objects, determine
the image intensity offsets, and detect image regions corre-
sponding to possibly clustered objects. Second, a coarse-to-
fine region analysis is performed to compute the universe
U of atomic image regions and the corresponding adjacency
graph. Third, global energy minimization is performed by
iterative (Algorithm 1) and direct (Criterion 2) solution of
MSC (P (U)) in Eq. (17) above. This includes the automatic
choice of hyperparameters for scale invariance, comprising
the weight α of the regularization of the deformations in
Eq. (6) and the constant term β of the extended set energy
functions in Eq. (14). Both parameters are determined based
on the scale σ, which is computed automatically in the first
step. Fourth, post-processing is performed. The steps are
detailed below.

3.1 Scale Estimation, Intensity Offsets, and Detection

of Regions of Possibly Clustered Objects

To estimate the scale of cell nuclei, we compute the Hessian
matrix of the image intensities [53] and determine local max-
ima of the determinant of the Hessian in scale space [54].
False-positive detections are discarded if (i) the detection
corresponds to a non-negative response of the Laplacian of
Gaussian filter or (ii) the scale of the detection is an outlier
(determined based on the mean absolute difference to the
median scale). The mean of the remaining inliers is then
associated with the scale σ of an image.

The intensity offsets τx for all image points x ∈ Ω are
computed using modified Gaussian filtering with standard
deviation according to the estimated scale σ (see Sup-
plemental Material 1). The denoised image intensities gx
(obtained by a Gaussian filter with standard deviation

√
2)

and the intensity offsets τx are then used to compute YΩ
(image intensities with τx offset) for all image points x ∈ Ω
according to Eq. (5) by setting ω = Ω.

We also determine the universe U of atomic image re-
gions and the corresponding adjacency graph G = (U, E). In
general, G is disconnected due to Definition 1 (Section 2.3.1).
Each connected component corresponds to a region of possibly
clustered objects. For computational efficiency, we first deter-
mine these regions, and then the corresponding connected
adjacency graph G for each region of possibly clustered
objects (formally this is the same as considering the discon-
nected adjacency graph of the whole image). We consider
the connected components of the foreground region Ωfg

(defined as in Section 2.2). This generally yields several
components which correspond to the background due to
image noise. We identify such components by considering
the perimeter-to-area ratio (P/A ratio). The intuition is that
components due to image noise have strongly irregular
contours (jagged or wavelike), while isolated and clustered
cell nuclei have rather smooth contours. Components with
strongly irregular contours can be identified by a large
perimeter compared to the area. We discarded such image
regions when the P/A ratio is larger than a threshold of 0.2,

which was chosen empirically. Our method is not sensitive
to the choice of this value (see Supplemental Material 4). We
then obtain the regions of possibly clustered objects as the
regions of the Voronoi diagram of the remaining connected
components (cf. Fig. 1(b)).

3.2 Coarse-to-Fine Region Analysis

We next determine the universe U of atomic image re-
gions and the corresponding connected adjacency graph G
separately for each region of possibly clustered objects (cf.
Fig. 1(c)). The main requirement for the universe U is that
each atomic image region overlaps with at most one object,
while not generating a universe U of an unnecessarily large
cardinality (which would increase the run time of Algo-
rithm 1). We thus start with a region of possibly clustered
objects as a whole, determine the irregularity of an object
in that region, and split the region into smaller parts as
long as the irregularity is large, ultimately obtaining the
atomic regions (which are not split further). To determine
the irregularity of an image region ω, we minimize the
energy function in Eq. (6) for ξ = 0 and consider the
normalized energy

r (ω) = inf
θ
ψω (θ, 0) /#ω. (22)

Eq. (22) corresponds to fitting an elliptical model to the
region ω. It is beneficial to use elliptical models here, since
the energy of these models is more sensitive to shape
irregularities of objects than the energy of deformable shape
models. Since the analysis is performed by splitting large
image regions into smaller parts, a coarse-to-fine region anal-
ysis scheme is induced (in contrast to Algorithm 1 which
uses a fine-to-coarse scheme). See Supplemental Material 5
for details.

3.3 Scale Invariant Global Energy Minimization

Each graph G = (U, E) determined as described in Sec-
tion 3.2 is processed as follows. First, the extended set
energies c (U) and c ({u}) are computed for all atomic
image regions u ∈ U by solving Eq. (6). Second, it is
checked whether U corresponds to a non-clustered cell
nucleus using the inequality in Criterion 2. If it does, the
closed-form solution X = {U} is applied. Otherwise, the
iterative Algorithm 1 is used to determine the solution X

of MSC(P (U)) using G. Below, we describe the automatic
choice of the hyperparameters α and β for Criterion 2 and
Algorithm 1 to establish scale invariance, and introduce
efficient implementations of Algorithm 1 and Eq. (6).

The extended set energy function c (X) = c′ (X) + β
in Eq. (14) depends on the hyperparameter β ≥ 0. To
properly choose a value for β, we need to understand how
c′ (X) = infθ,ξ ψω̃(X) (θ, ξ) in Eq. (11) depends on the scale σ
of an image. For an arbitrary image region ω = ω̃ (X), recall
that the energy infθ,ξ ψω (θ, ξ) approximates the cardinality
of a set of image points (Section 2.2). Since the number of
image points corresponds to the area, the number changes
quadratically with respect to the scale (for 2D images). Thus,
it is reasonable to assume that the energy infθ,ξ ψω (θ, ξ)
depends quadratically on the scale. Fig. 3(b) shows the
energy for image sections of different cell types in different

https://ieeexplore.ieee.org/document/9804854
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Fig. 3. Relation of the energy infθ,ξ ψω (θ, ξ) and the scale σ. Top:
Example image regions of different cell types, from left to right: U2OS,
NIH3T3, GOWT1, Fibroblast, HeLa. Bottom: Corresponding energy
infθ,ξ ψω (θ, ξ) as a function of the scale.

datasets generated by Gaussian filtering and sub-sampling
at different scales σ. It can be seen that the energy de-
pends quadratically on the scale (note that the vertical axis
is scaled quadratically). Thus, it is reasonable to choose
β = βfactor · σ2 as a quadratic function of the scale to
achieve scale invariance. In our experiments using image
data of different scales and cell types, βfactor = 0.33 turned
out to be a reasonable choice (cf. Section 4).

For Algorithm 1, the extended set energies c (X) =
infθ,ξ ψω̃(X) (θ, ξ)+β have to be computed often. Each com-
putation amounts to solving the convex problem in Eq. (6).
Efficient implementation of convex energy minimization is
thus crucial. Eq. (6) includes the term Gωξ via Eq. (7) and
Eq. (3), which can be interpreted as radial basis function
interpolation [55] due to the block Toeplitz structure of the
matrix Gω . Reducing the number of points (summands of
the interpolant) motivates the approximation Gωξ ≈ G̃ω ξ̃,
where the matrix G̃ω is constructed from a subset of the
columns of Gω (the rows are normalized to the sum of 1)
and ξ̃ is a vector of lower dimension than ξ (the dimension
of ξ corresponds to the overall number of points in an
image). The columns of Gω correspond to the regular grid
of all image points Ω, and the columns of G̃ω correspond
to the sub-sampled regular grid of image points within
the region ω spaced by 2σG (where σG is the standard
deviation of the Gaussian function used for the matrix Gω ,
cf. Section 2.1). We used σG = 0.2σ (where σ is the scale of
an image). Due to sub-sampling, the number of points of the
regular grid and thus also the dimension of ξ̃ scales inverse-
quadratically with σ. Since the regularization parameter α
of the energy in Eq. (6) is a factor of ‖ξ̃‖1 (using ξ̃ instead of
ξ), inverse-quadratic scaling of the dimension of ξ̃ needs
to be compensated by quadratically scaling α. We used
α = αfactor · σ2 and αfactor = 5 · 10−4 in our experiments
(Section 4). The approximation Gωξ ≈ G̃ω ξ̃ concerns only
the deformations of the shape representation in Eq. (3).
The approximated shape representation has a somewhat
lower expressive power (since the matrix G̃ω is of lower
rank thanGω), but substantially increases the computational
efficiency, since less parameters need to be determined (the
dimension of ξ̃ is lower than ξ). Another interpretation of

Algorithm 2: Approximative solution of MSC (S ).

input: Family S ⊆ P (U); number of iterations
max_iter; decay factor γ ∈ (0, 1)

1 let c̃ (X, β′) = c′ (X) + β′;
2 for iter = 1, . . . ,max_iter do
3 X ′ ← {}; V ← U ; Z ← S = {X1, . . . , Xn};
4 β′ ← β · γ(iter−1);
5 while #V > 0 do // greedy step

6 let Nk = #(Xk ∩ V );
7 let Tk = {c̃ (Xi, β

′) /Nk if Nk > 0;∞ else};
8 set k′ ∈ [n] so that Tk′ = mink Tk;
9 insert Xk′ into X ′;

10 V ← V \Xk′ ;

11 while #Z > 0 do // merge step

12 set k′ ∈ [n] so that
Xk′ ∈ Z ∧ c̃ (Xk′ , β′) = mink:Xk∈Z c̃ (Xk′ , β′);

13 if Xk′ /∈X ′ and ∃Y ⊆X ′ :
⋃

Y =
Xk′ ∧ c̃ (Xk′ , β′) <

∑

X∈Y
c̃ (X, β′) then

14 X ′ ← (X ′ \ Y ) ∪ {Xk′};
15 Z ← Z \ {Xk′};
16 if iter = 1 or

∑

X∈X ′ c (X) <
∑

X∈X
c (X) then

X ←X ′;

17 return X ;

the perturbation term Gωξ is that it corresponds to a low-
pass filter of ξ, which is due to the block Toeplitz structure
of the matrix Gω and since each row represents a Gaussian
function (see above). High frequencies in ξ are suppressed
and thus sub-sampling ξ introduces only minor errors.
Therefore, minimization using the approximation yields a
solution close to the globally optimal solution for the whole
segmentation task with the original minimization. Further
implementation details of Algorithm 1 and an initialization
scheme for convex programming with fast convergence are
described in Supplemental Material 6.

To solve the NP-hard min-weight set-cover problem
MSC in Algorithm 1, we use the approximative Algo-
rithm 2, which iteratively performs a two-step scheme.
First, a greedy step [56] determines the family X ⊆ S

for Eq. (17) so that the value C =
∑

X∈X
c (X) of the

global optimization objective MSC(P (U)) is at most fac-

tor h (#U) =
∑#U

k=1 1/k higher than the globally optimal
solution (due to false merges/splits). Any false splits that
may arise are coped with by the subsequent merge step,
which merges subsets of X if this decreases the value C
of the global optimization objective. To cope with possible
occurrences of false merges, both steps are repeated using
a more conservative merging strategy, i.e. decreasing β
by a decay factor γ, and the family X which yields the
overall lowest value C is considered as final solution. We
used 5 iterations and γ = 0.8. The approximation ratio of
Algorithm 2 is h (#U) or better, since modifications of the
greedy solution are only permitted if the value C is lowered.

This conservative upper bound of the approximation
ratio can be tightened a posteriori. Let C∗ be the unknown
exact solution of Eq. (17) and C∗

LP ≤ C∗ the exact solution of
the LP relaxation. The approximation ratio C∗/C is thus at

https://ieeexplore.ieee.org/document/9804854
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Our method e-

Fig. 4. A posteriori assessment of global optimality of Algorithm 2 for
different numbers of iterations (max_iter) and values of γ based on
all instances of MSC(S ) in Algorithm 1 in our experiments. Each curve
shows a lower bound (indicated by the shading) of the ratio of de-facto
exact solutions.

worst C∗
LP/C . In our experiments, the average approxima-

tion ratio was at least 99.7% (median: 100.0%). Moreover,
we found that a de-facto exact solution (C∗

LP/C ≥ 0.99) was
determined in at least 92.1% of the cases. Fig. 4 shows lower
bounds of the ratio of de-facto exact solutions for different
values of γ and iteration numbers. Note that the special case
γ = 1 corresponds to our previous approach [46]. It can be
seen that for γ < 1, higher lower bounds are obtained, thus,
our new method improves the global optimality (we used
γ = 0.8 and 5 iterations as indicated in the figure).

Algorithm 1 also requires solving MSPLP defined in
Eq. (15). An exact solution can be obtained in almost-
quadratic time using linear programming [57]. However, the
lower bound computed by MSPLP serves the only purpose
to determine whether computation of the exact set energy
c (X) in line 11 is necessary. Relaxing this bound thus, at
worst, leads to more frequent computations of the exact set
energy than necessary, but does not affect the segmentation
result. This means that for MSPLP, low run time is more
important than accuracy. We thus approximated MSPLP

by packing disjoint elements of S in decreasing order of
their respective set energies c′, which performs in linear-
logarithmic run time, and found that it overall yields the
lowest run time.

3.4 Post-Processing

Post-processing of the segmentation result from the globally
optimal solution X is performed by refining the segmen-
tation masks (e.g., hole filling using morphological opera-
tions) and rejecting falsely detected objects (e.g., imaging
artifacts or debris objects). Details are given in Supplemental
Material 7. Note that objects are neither split nor merged in
the post-processing.

4 EXPERIMENTAL RESULTS

We have applied the proposed approach to 2D fluorescence
microscopy image data. For performance evaluation, we
have used six image datasets of five different cell types
comprising various challenges, including publicly available
benchmark datasets. We studied the segmentation accuracy
and the cluster splitting performance, and carried out a
quantitative comparison with previous methods. We used
region-based and contour-based performance measures, as
well as detection-based measures. We also provide an analy-
sis of the run time performance and describe the application
of our approach to another imaging modality.

4.1 Performance Measures

The used region-based performance measures are defined
based on the set of all ground truth objects Rgt within an
image and the set of all segmented objects Rseg:

Dice similarity coefficient (Dice). The Dice coefficient is
defined as

Dice
(

Rgt,Rseg

)

=
2 ·

∣

∣

(

∪Rgt

)

∩
(

∪Rseg

)
∣

∣

∣

∣∪Rgt

∣

∣+
∣

∣∪Rseg

∣

∣

(23)

and measures the overlap of the ground truth and the
segmentation result, where 0 means no overlap and 1
means perfect agreement. Dice corresponds to the pixel-
based F1 score (harmonic mean of precision and recall).

Rand index (Rand). The Rand index measures the similar-
ity of the ground truth and the segmentation result [49].
Rand corresponds to the pixel-based accuracy score
and, in contrast to Dice, is not biased towards positive
or negative detections. A Rand value of 0 means no
overlap, and a Rand value of 1 means perfect agree-
ment.

Object-based Jaccard index (SEG). In contrast to Dice and
Rand, which only consider the union of all objects
within an image, the SEG measure [58] takes into ac-
count the performance for individual objects. For each
ground truth object G ∈ Rgt, the measure is defined as

SEG
(

G,Rseg

)

= (24)
{

|G∩S|
|G∪S| if ∃S ∈ Rseg : |G ∩ S| > 0.5 · |G| ,
0 else

and attains values between 0 and 1. The SEG value
is 0 if no segmented object overlaps the ground truth
objects by at least 50% (e.g., due to very inaccurate
segmentations, falsely split/merged, or undetected ob-
jects). The SEG value is 1 if a ground truth object is
perfectly segmented.

Notably, Dice and Rand are sensitive to false-positive detec-
tions, but invariant to falsely split/merged objects. On the
other hand, SEG is sensitive to falsely split/merged objects
and false-negative detections (but invariant to false-positive
detections). Overall, SEG is the most comprehensive and
best suited measure for region-based segmentation perfor-
mance since it incorporates both detection and object-based
segmentation performance.

We also used two contour-based performance mea-
sures. Both measures are based on the Euclidean distance
dist∂G (x) = minx′∈∂G ‖x− x′‖ of an image point x to the
contour ∂G of the ground truth object G ∈ Rgt and the
corresponding segmented object S ∈ Rseg:

Object-based Hausdorff distance (HSD).
The Hausdorff distance

HSD (G, S) = max
x∈∂S

dist∂G (x) (25)

is the maximum distance of the object contour ∂G to
the contour ∂S of the segmented object [59]. The HSD
is not upper-bounded and attains 0 if the two objects
are identical.

https://ieeexplore.ieee.org/document/9804854
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Object-based normalized sum of distances (NSD).
The NSD measure is defined by

NSD (G, S) =
∑

x∈G4S

dist∂G (x) /
∑

x∈G∪S

dist∂G (x) , (26)

where G4S = (G \ S) ∪ (S \G) is the symmetric
difference of G and S. The NSD is the ratio of the
number of image points, which are either only in G
or only in S, where each image point is weighted by
its distance to the ground truth object contour [49]. The
measure ranges from 0 (G and S are identical) to 1 (no
overlap of G and S).

We computed HSD and NSD for all segmented objects of an
image. In case of ambiguities, the correspondences between
the ground truth objects Rgt and the segmented objects Rseg

were established by choosing the segmented object S ∈ Rgt

which is closest to the ground truth object G ∈ Rgt using the
respective distance function.

In addition, we used two detection-based performance
measures to better assess the segmentation performance of
closely clustered or overlapping objects. We computed the
average number of falsely merged (Merge) and split (Split)
objects per image. These events were identified using the
definition proposed in [49].

4.2 Datasets

We used fluorescence microscopy image datasets of five
different cell types. The data is challenging for a variety
of reasons, including autofluorescence artifacts, low signal-
to-noise ratio, closely clustered and partially overlapping
objects, strongly non-elliptical shapes, and different object
scales.

NIH3T3 dataset. This dataset [49] consists of 49 Hoechst-
stained images with a size of 1344 × 1024 pixels. The
dataset includes 2212 cell nuclei in total and is challeng-
ing because of strong autofluorescence artifacts, visible
debris, significant intensity inhomogeneities, and many
closely clustered or partially overlapping cell nuclei.

U2OS dataset. The dataset [49] consists of 48 images of
U2OS cells that were stained with Hoechst 33342. The
images have a size of 1349×1030 pixels and the dataset
includes 1836 cell nuclei. The dataset is challenging due
to frequent occurrence of strongly non-elliptical and
closely clustered cell nuclei.

GOWT1 datasets. We used two datasets of GFP-transfected
mouse embryonic stem cells from the IEEE ISBI Cell
Tracking Challenge training data [58]. The datasets are
temporal image sequences, where each image has a size
of 1024× 1024 pixels. GOWT1 datasets 1 and 2 consist
of 31 images (with 150 cell nuclei) and 20 images (128
cell nuclei), respectively. GOWT1 is challenging due to
low signal-to-noise ratio, low image contrast, and cell
nucleoli (distinct dark regions within cell nuclei). The
ground truth consists of eight fully annotated images
and partial annotations for the other images. To avoid
wrong false-positive detections due to partial annota-
tion, only performance measures which are invariant
to false-positive detections can be used for the whole
dataset (SEG, Merge, Split). In addition, we used Dice,
Rand, HSD, and NSD for the fully-annotated images.

Fibroblast dataset. This dataset [60] contains 175 3-D stacks
of 35–50 DAPI-stained images of human Fibroblast
cells. Each image has a size of 1024 × 1024 pixels. The
dataset includes 985 cell nuclei. From each of the 175
stacks, we used the image slice with the highest object
density for the evaluation. The ground truth does not
include objects at the image boundaries, causing wrong
false-positive detections. To avoid misleading results,
objects detected at image boundaries were ignored for
Dice and Rand. The dataset is challenging due to par-
tially strong intensity inhomogeneities of the cell nuclei.

HeLa dataset. We also used 25 DAPI-stained HeLa images.
The images contain 282 cell nuclei and each image has
a size of 1200× 1620 pixels.

Overall, 348 images were used, including 5593 annotated
cell nuclei in total.

4.3 Evaluation

We applied the SuperDSM approach using the same set of
hyperparameters for all six datasets described in Section 4.2.
In addition, we applied our approach using dataset-specific
adaptations (SuperDSM*). Details on the hyperparameters
are given in Supplemental Material 8.

We performed a comparison with previous methods,
including nine state-of-the-art methods comprising those
which were reported to achieve the best results on the
respective datasets. We also used three standard methods
(Otsu, BLOB-LS, and BLOB-RW) for the Fibroblast and
HeLa datasets. These methods were optimized for each
dataset using a grid search scheme, which maximizes the
equally weighted sum of the Dice and SEG values using
two randomly chosen images per dataset. These images are
not included in the test set. Note that we did not use hyper-
parameter validation for our method or the other methods,
which is more realistic in practical applications. Also, we
are on the safe side that we do not give an advantage to our
method in the comparison.

Global intensity thresholding (Otsu). A global intensity
threshold is computed from the image histogram [32].
Connected component analysis is employed to identify
individual objects.

Blob detection-based level sets (BLOB-LS). A variational
level set model [61] and multi-scale Laplacian of Gaus-
sian filtering [54] for initialization are used. Individ-
ual objects are determined using connected component
analysis.

Blob detection-based random walker (BLOB-RW).
This algorithm [33] expands object and background
markers based on the image intensities. For initializa-
tion, a multi-scale Laplacian of Gaussian blob detector
[54] and a watershed transform are used.

Convex variational level sets (CVX-LS). The two-step ap-
proach [24] exploits the convexity of level set function-
als. First, an image is segmented and then semi-local
refinement is performed. Shape information is not used.

Region-based progressive localization (RPL).
Progressive contrast enhancement and pre-trained clas-
sifiers to detect salient image regions are used [62]. Cell
clusters are split using a binary classifier.

https://ieeexplore.ieee.org/document/9804854
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Blob detection-based approach (BLOB). Elliptical filter
banks for nuclei detection and a watershed transform to
obtain segmentation candidates are used [63]. Temporal
information from the image sequence is exploited to
select or reject candidates.

Bayesian risk-based level sets (BR-LS). A level set func-
tional based on the Bayesian classification risk is used,
followed by morphological analysis to separate individ-
ual cell nuclei [28].

Cell proposal network (CPN). The method [64] uses two
convolutional neural networks (CNN). First, a CNN
based on [65] is employed to determine candidates
for cell nuclei bounding boxes. Then, another CNN
based on the U-Net [2] is used for segmentation of
each candidate. Finally, multiple hypothesis tracking
is performed and the candidates corresponding to the
most plausible trajectories are selected.

Ellipse-based shape decomposition (SEG-SELF, RFOVE).
First, locally adaptive thresholding is used to binarize
an image. Then, cell cluster splitting is performed by
approximation of the binary image by a low-cardinality
set of ellipses, either using hard (SEG-SELF [30]) or soft
(RFOVE [31]) constraints for the overlap of the ellipses
and the binary image.

Cellpose. First, a modified U-Net [2] with residual blocks
and global average pooling is used to predict a vector
field. Then, individual objects are identified by group-
ing image points whose vectors point to the same loca-
tion [11]. The authors trained the model using a wide
spectrum of different microscopy images including the
NIH3T3 and U2OS datasets (Section 4.2).

Globally optimal collaborative ellipses (GOCELL).
Our previous approach [46] uses elliptical models and
does not exploit superadditivity. Additional pre-pro-
cessing is required for NIH3T3 (local background sub-
traction) and GOWT1 (nucleoli removal).

For the U2OS and NIH3T3 datasets, we computed the
performance values for SEG-SELF and RFOVE based on the
original segmentation results published by the authors. Some
results for HSD and NSD are somewhat different from pre-
viously reported values [46] since object correspondences
are established differently (cf. Section 4.1). Results for HSD
somewhat differ from [30], [31], possibly due to different
computation of object correspondences. For the two GOWT1
datasets, we applied the original SEG-SELF and RFOVE
implementations. In addition, we applied Cellpose to all six
datasets. Note that the authors had used the NIH3T3 and
U2OS datasets for training the network. Thus, the results
of Cellpose for these two datasets should be treated with
caution. For the NIH3T3 and the two GOWT1 datasets, we
had to manually adapt one input parameter of Cellpose to
achieve useful results (the optimal nuclei diameter, which
we determined based on the ground truth, and which
by default is computed automatically). For CVX-LS, RPL,
BLOB, BR-LS, and CPN, we have used the performance val-
ues provided in the respective publications. For CPN, only
performance values for the SEG measure were reported.

The results for all approaches and all datasets are pro-
vided in Table 1. Below, we discuss the datasets individually.

The NIH3T3 dataset contains many closely clustered
cell nuclei. SuperDSM yields better results than SEG-SELF

TABLE 1
Segmentation performance of different approaches. For SEG, Dice,

Rand, higher is better. For HSD, NSD, Merge, Split, lower is better. Not
available results are indicated by “—”. Best results are highlighted.

SEG Dice Rand HSD NSD Merge Split

NIH3T3 cells
RPL — 0.91 0.93 14.1 0.09 — —
SEG-SELF 0.80 0.89 0.92 12.9 0.11 0.8 1.3
GOCELL 0.84 0.92 0.94 8.3 0.06 0.7 0.5
RFOVE 0.80 0.89 0.92 13.3 0.12 0.9 0.9
Cellpose 0.75 0.86 0.92 33.4 0.17 0.0 0.4
SuperDSM 0.82 0.90 0.93 8.8 0.08 0.8 0.4
SuperDSM* 0.85 0.92 0.94 8.3 0.07 0.5 0.6

U2OS cells
CVX-LS — 0.94 — 12.8 0.05 — —
RPL — 0.96 0.96 10 0.02 — —
BR-LS — 0.96 — 12.7 — — —
SEG-SELF 0.85 0.94 0.95 13.7 0.08 0.3 4.6
GOCELL 0.75 0.92 0.93 15.5 0.09 0.4 3.3
RFOVE 0.77 0.92 0.93 15.8 0.16 1.8 1.9
Cellpose 0.89 0.96 0.96 11.6 0.06 0.1 0.2
SuperDSM 0.86 0.93 0.94 8.8 0.05 0.6 0.5
SuperDSM* 0.90 0.96 0.96 7.3 0.06 0.9 0.4

GOWT1 dataset 1
BLOB 0.74 — — — — — —
CPN 0.85 — — — — — —
SEG-SELF 0.52 0.89 0.97 30.3 0.17 0.0 0.1
GOCELL 0.85 0.94 0.98 4.7 0.02 0.0 0.0
RFOVE 0.60 0.89 0.97 25.6 0.15 0.0 0.1
Cellpose 0.72 0.86 0.97 28.2 0.16 0.1 0.0
SuperDSM 0.84 0.94 0.98 4.3 0.01 0.0 0.0
SuperDSM* 0.87 0.94 0.98 4.2 0.01 0.0 0.0

GOWT1 dataset 2
BLOB 0.91 — — — — — —
CPN 0.87 — — — — — —
SEG-SELF 0.82 0.92 0.97 18.4 0.12 0.0 1.1
GOCELL 0.91 0.95 0.98 3.9 0.01 0.0 0.0
RFOVE 0.79 0.90 0.97 18.9 0.13 0.0 0.7
Cellpose 0.73 0.92 0.97 18.2 0.13 0.0 0.6
SuperDSM 0.89 0.94 0.98 4.3 0.02 0.0 0.5
SuperDSM* 0.92 0.94 0.98 3.6 0.01 0.0 0.0

Fibroblasts
Otsu 0.78 0.86 0.97 19.6 0.17 0.1 0.9
BLOB-LS 0.70 0.77 0.95 27.1 0.22 0.1 1.2
BLOB-RW 0.63 0.71 0.93 32.7 0.22 0.0 0.1
GOCELL 0.93 0.90 0.98 6.5 0.01 0.0 0.0
Cellpose 0.54 0.56 0.94 115.0 0.39 0.0 0.3
SuperDSM 0.94 0.89 0.98 5.8 0.02 0.0 0.1
SuperDSM* 0.95 0.90 0.98 5.1 0.01 0.0 0.0

HeLa cells
Otsu 0.85 0.94 0.98 10.7 0.08 0.2 2.8
BLOB-LS 0.85 0.93 0.98 13.5 0.06 0.2 0.1
BLOB-RW 0.67 0.80 0.93 32.7 0.18 0.0 0.4
GOCELL 0.89 0.94 0.98 15.9 0.03 0.0 0.3
Cellpose 0.69 0.76 0.95 106.7 0.24 0.0 0.3
SuperDSM 0.90 0.93 0.98 13.9 0.02 0.1 0.0
SuperDSM* 0.90 0.94 0.98 13.2 0.03 0.1 0.0

and RFOVE regarding SEG, Dice, Rand, HSD, NSD, and
Split. Compared to RPL, SuperDSM yields a slightly worse
Dice value, but improved NSD and strongly improved HSD
values. The lowest number of falsely merged/split objects
is obtained by Cellpose and the second-lowest by GOCELL
and SuperDSM. However, for Cellpose this dataset was
used for training, and GOCELL employs dataset-specific
parameters and pre-processing. For SEG, Dice, HSD, and
NSD, SuperDSM performs substantially better than Cell-
pose. Besides using fixed parameters for all datasets, we also
employed dataset-specific adaptations for our approach (Su-
perDSM*) and discarded objects by post-processing which
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(a) (b)

(c) (d)

Fig. 5. Example segmentation results (green contours) for the NIH3T3
dataset. (a) Original image. (b) Ground truth. (c) Result of RFOVE.
(d) Result of SuperDSM*.

likely correspond to autofluorescence artifacts (based on
the radius and connected component analysis). SuperDSM*
yields the best results for SEG, Dice, Rand, and HSD. An
example segmentation result is shown in Fig. 5. It can be
seen that clustered and non-clustered cell nuclei are well
segmented.

The U2OS dataset is difficult due to strongly non-ellip-
tical shape of the cell nuclei, which is challenging for the
merging/splitting schemes of the segmentation methods.
Cellpose yields the lowest number of falsely merged/split
objects, however, this dataset was used for training the net-
work. SEG-SELF achieves the second-lowest false merging
rate (0.3 per image), but has a strong tendency to over-seg-
mentation (4.6 falsely split objects per image). SuperDSM
yields only 0.6 falsely merged and only 0.5 falsely split cell
nuclei per image. This good merging/splitting performance
is in agreement with an improved SEG performance (SEG
is sensitive to false merges/splits). Compared to RPL, Su-
perDSM performs worse for Dice, Rand, and NSD. How-
ever, Dice and Rand are invariant to false merges/splits,
which were not reported for RPL. SuperDSM* yields the
best results for SEG, Dice, Rand, and HSD. SEG-SELF
and GOCELL yield fewer false merges, but significantly
more false splits. Thus, overall, SuperDSM* performs best.
Fig. 6 shows example segmentation results. Our approach
yields no false merges/splits, whereas SEG-SELF yields four
falsely split cell nuclei. The object contours of all cell nuclei
are accurately segmented.

For GOWT1 dataset 1, SuperDSM yields overall very
good results. Compared to SEG-SELF and RFOVE, strong
improvements can be observed for SEG (0.60 to 0.84), Dice
(0.89 to 0.94), HSD (25.6 to 4.3), and NSD (0.15 to 0.01).
Improvements are also large compared to Cellpose and
concern mostly SEG (0.72 to 0.84), Dice (0.86 to 0.94), HSD
(28.2 to 4.3), and NSD (0.16 to 0.01). GOCELL and CPN
perform slightly better (SEG is 0.85), however, only SEG
was reported for CPN (which is invariant to false-positive

(a) (b)

(c) (d)

Fig. 6. Example segmentation results (green contours) for the U2OS
dataset. (a) Original image (contrast-enhanced). (b) Ground truth.
(c) Result of SEG-SELF. (d) Result of SuperDSM*.

detections) and GOCELL used dataset-adapted parameters
and pre-processing. Using our method with dataset-spe-
cific adaptations (SuperDSM*) yields the best results for all
performance measures. For GOWT1 dataset 2, SuperDSM
performs competitively. SEG is improved compared to CPN,
SEG-SELF, RFOVE, and Cellpose, but not as good as BLOB
(which did not perform well for GOWT1 dataset 1). Su-
perDSM* yields the best results regarding all measures.
Fig. 7 shows example segmentation results. All objects are
accurately segmented, including the low-intensity cell nu-
clei and the irregularly shaped nucleus in GOWT1 dataset 2.

For the Fibroblast dataset, SuperDSM yields the best
results for SEG, Rand, HSD, and Merge, but is slightly worse
for Dice, NSD, Split compared to GOCELL. Compared to
Cellpose, the results are strongly improved for SEG (0.54 to
0.94), Dice (0.56 to 0.89), Rand (0.94 to 0.98), HSD (115.0 to
5.8), NSD (0.39 to 0.02), and Split (0.3 to 0.1). The dataset
contains multiple images with only few cell nuclei and it
turns out that the pre-processing somewhat underestimates
the scale σ. Adapting this parameter (SuperDSM*) yields
the best results for all measures. Example segmentation
results are shown in Fig. 8. Our approach reliably segments
the contours of both elliptical and non-elliptical cell nuclei.
GOCELL performs worse since elliptical shape models are
insufficient. BLOB-LS and BLOB-RW perform worse since
their initialization is prone to the non-elliptical shapes and
closely clustered objects.

For the HeLa dataset, SuperDSM performs overall better
than Otsu, BLOB-LS, BLOB-RW, and Cellpose. Compared
to GOCELL, SuperDSM yields better results for SEG, HSD,
NSD, and Split. Overall, SuperDSM yields the best result for
SEG, Rand, NSD, and Split. SuperDSM* yields the overall
best result.

Considering all datasets, it turns out that our SuperDSM
approach achieves better results than previous methods for
the Fibroblast and HeLa datasets and competitive results for
the U2OS, NIH3T3, GOWT1 datasets using the same set of
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(a)

(b)

(c)

(d)

Fig. 7. Example segmentation results (green contours) for GOWT1
dataset 1 (left column) and GOWT1 dataset 2 (right column). (a) Original
images (contrast-enhanced). (b) Ground truth. (c) Result of RFOVE.
(d) Result of SuperDSM*.

hyperparameters for all six datasets. The results are gener-
ally slightly worse than using dataset-specific adaptations
(SuperDSM*). Using such adaptations, our approach gener-
ally yields best results for all datasets for the region-based
measure SEG. For Dice and Rand, the results are competi-
tive. Concerning contour-based measures, the performance
of our method is best for four out of six datasets, and sec-
ond-best for two datasets. Regarding cluster splitting, our
method generally yields the best results for all datasets for
the number of falsely merged/split objects (sum of Merge
and Split in Table 1), and achieves very low Merge and
Split counts (less than one falsely merged/split objects per
image). For the NIH3T3 and U2OS datasets, Cellpose yields

(a) (b)

(c) (d)

Fig. 8. Example segmentation results (green contours) for the Fibroblast
dataset. (a) Original image (contrast-enhanced). (b) Result of GOCELL.
(c) Result of Cellpose. (d) Result of SuperDSM*.

fewer falsely merged/split objects, however, both datasets
were used for training the network. For the other datasets,
our method achieves strongly improved results compared to
Cellpose for all region-based and contour-based measures.
The best performing methods besides our approach are RPL
and GOCELL. However, for RPL, published results for SEG,
Merge, and Split are not available. GOCELL yields worse
results than SuperDSM for non-elliptical cell nuclei (e.g.,
U2OS dataset). We thus conclude that our method performs
overall best in this study.

In practical applications, the hyperparameters of the
global energy minimization of our SuperDSM* method can
be adapted as follows starting from the default values
(SuperDSM). For example, when the computed cell contours
are too smooth, one could reduce the weight α of the
regularization of the deformations in Eq. (6). When objects
are falsely split (e.g., due to irregular shapes) one could
increase the constant term β of the extended set energy
functions in Eq. (14). The scale σ can be adapted by using
σ = R/

√
2, where R is the average radius of cell nuclei

which could be determined coarsely.

4.4 Run Time Performance

In addition, we studied the run time performance of our
approach. As described in Section 3, our approach sepa-
rately processes regions of possibly clustered objects. This
involves the computation of the extended set energies c (X)
in Eq. (14) for different sets X ∈ P (U) to determine the
solution X ⊆ P (U) of MSC (P (U)), see Algorithm 1. The
computational cost is the number of sets (image regions), for
which the set energies must be computed (see Section 2.3.3).
This number is upper-bounded by the cardinality of the
universe of a region of possibly clustered objects. Regions of
possibly clustered objects with universe cardinality #U ≤ 2
are computationally cheap, since #P (U) ≤ 3 and thus at
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most three sets must be computed. We found that such
regions occurred in 82.7% of the cases. The other cases are
computationally more challenging, and our method reduces
the computational cost by excluding sets before computing
the corresponding energies using Criterion 1 and Crite-
rion 2. The more sets are excluded, the more efficient the
method is. As a measure of efficiency, we use the set exclusion
rate (SER), which is the ratio of excluded sets compared to
the cardinality of P (U). To quantify the computational cost
of our approach for the computationally challenging cases,
below we consider SER for regions of possibly clustered
objects with universe cardinality #U > 2. We also study
the run time of our method.

Fig. 9(a) shows a histogram of SER values for the com-
putationally challenging cases (#U > 2) for all six datasets.
The median SER is 0.33 and the maximum is 0.97, thus,
the computational cost was typically reduced by 33% and
at best by 97%. For the U2OS, GOWT1, Fibroblast, and
HeLa datasets, relatively high SER values were obtained.
The median SER is 0.62 for GOWT1 dataset 1 and 0.43
for the other datasets. Thus, the computational cost was
typically reduced by 43% or 62%, respectively. Only for
the NIH3T3 dataset lower SER values were obtained. The
reason is probably that this dataset is most difficult in terms
of clustered objects. Overall, we can conclude that the two
criteria effectively reduce the computational cost for the
computationally challenging cases.

Fig. 9(b) shows the average computation time per image
of the individual processing steps of our approach. It can
be seen that both pre-processing and post-processing per-
formed in almost constant time (see the scattering indicated
by the error bars). The computationally most expensive task
in pre-processing is scale estimation (cf. Section 3.1). The
strongest scattering in the average run time can be observed
for the coarse-to-fine region analysis, which is probably due
to the linear search to determine seeds for splitting regions
with high normalized energies (cf. Section 3.2). Regarding
the global energy minimization (cf. Section 3.3), we observe
that images with many closely clustered objects correlate
with longer run times (U2OS and NIH3T3 datasets). This
confirms that our approach efficiently copes with non-clus-
tered cell nuclei. The overall average run time was 45.3
seconds per image. For comparison, the average run time
of our previous globally optimal approach [46] was 1:23
minutes per image using the same hardware (see below).
Thus, we achieved a speed-up of 183% compared to our
previous method [46]. This is remarkable, since deformable
shape models used in the proposed approach are compu-
tationally much more challenging than elliptical models
due to the higher dimension of the parameter space. The
average run time of Cellpose [11] was 18.7 seconds per
image. However, additional time is required for training,
while for our approach training is not necessary. For the
globally optimal approach using circular models [45], a run
time of 38 minutes was reported in [46]. This emphasizes the
computational efficiency of the proposed approach. In bio-
logical applications, most time is required for preparation
of the specimen such as staining and for image acquisition
(e.g., DAPI staining takes at least 2–4 minutes [1]). Thus, the
run time of our method is suited for practical applications.

Fig. 9(c) shows the overall run time of our method per

image. From the mode of this histogram it can be seen that
for the vast majority of the images, the typical computation
time was less than 1 minute per image (84.1% of the
images). For 95.8% of the images, the overall run time was
less than 2 minutes. We observed only two cases, where the
computation lasted unexpectedly long (a single image from
the Fibroblast dataset, which took 14 minutes for SuperDSM
and 12 minutes for SuperDSM*). This is due to strong image
noise leading to a large number of detected intensity peaks
used as seed points by the coarse-to-fine region analysis for
splitting image regions (cf. Supplemental Material 5).

All experiments were performed using an AMD Ryzen
Threadripper 3970X CPU and 32 GB of RAM. We used
Intel Math Kernel Library 20.0 for fast sparse and dense
linear algebra. For the coarse-to-fine region analysis, up to
16 regions of possibly clustered objects were processed in
parallel. For global energy minimization, the energies for up
to 16 sets were computed in parallel. For post-processing, up
to 16 objects were processed in parallel. Note that no GPU
acceleration was used for the experiments. Faster run times
can be achieved by increasing the degree of parallelization,
which is straightforward.

4.5 Application to Different Imaging Modality

So far, we have studied the performance of our method us-
ing a wide range of fluorescence microscopy image data. In
a final experiment, we investigated the applicability of our
approach to another imaging modality, namely histopathol-
ogy images stained with haematoxylin and eosin (H&E).
These images are color images, where cell nuclei appear in
blue or dark purple. We used the training dataset of the
MICCAI 2018 MoNuSeg challenge [66]. The image size is
1000 × 1000 pixels and the data contains 1390 cell nuclei
from the histological section of a human stomach in ade-
nocarcinoma disease condition (see Fig. 10(a)). The data
is challenging due to very densely clustered cell nuclei, a
wide variety of nuclei shapes, and strongly inhomogeneous
background.

We used minor methodological adaptations to account
for the very different imaging modality. This concerns only
pre-processing and the computation of YΩ (image intensities
with τx offset). The idea is to transform the image intensities
so that cell nuclei (dark purple regions) correspond to bright
intensities. To this end, we first average the image inten-
sities over the three color channels grx, g

g
x, g

b
x using gx =

1 − 1
3

(

grx + ggx + gbx
)

. Second, we apply Gaussian filtering
(standard deviation σ) followed by local maximum filtering
(2σ × 2σ neighborhood) to determine the locally maximal
responses gmax

x . Third, we compute YΩ (image intensities
with τx offset, see Eq. (5)) by τx = max

{

gmax
x ,meanx∈Ω gx

}

using the mean intensity over all image points.
Our method performed the segmentation within 3:06

minutes and the result is shown in Fig. 10(c). We found that
97.1% of the cell nuclei were detected (using the detection
measure in [49]), and only 4.5% were falsely merged or
split, respectively. Given that our approach is designed for
fluorescence microscopy images rather than H&E-stained
histopathology images, the result is promising. In Fig. 10(c),
right bottom, few small tissue regions are segmented since
they are slightly darker than their neighborhood (as for
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(a) (b) (c)

Fig. 9. Run time performance of our approach for the six datasets (darker color shades correspond to SuperDSM, brighter color shades correspond
to SuperDSM*). (a) Histogram of the set exclusion rate SER (relative frequencies). (b) Computation time of the individual processing steps of our
approach (mean and standard deviation). (c) Histogram of the total run time per image (absolute frequencies). The labels on the horizontal axis
denote intervals (e.g., 0 to 1 minutes, 1 to 2 minutes).

(a) (b) (c)

Fig. 10. (a) Original H&E-stained histopathology image. (b) Ground truth. (c) Segmentation result (green contours) of SuperDSM*.

cells). The result could be improved by not only taking into
account the brightness, but also the color hue and saturation
for computing YΩ. Overall, this experiment shows that our
approach can be generalized to other imaging modalities.

5 CONCLUSION

We have introduced a new globally optimal approach based
on deformable shape models and global energy minimization
for cell nuclei segmentation in microscopy images. The ap-
proach intrinsically copes with non-elliptical shapes, jointly
exploits shape and intensity information, and is based on
an implicit parameterization, which leads to a convex energy.
Thus, energy minimization is independent of the initializa-
tion, fast, and robust. To jointly perform cell segmentation
and cluster splitting, we have considered the infimum of
the convex energy as a set energy function, i.e. a function of
the set of image regions where model fitting is performed.
We have proposed a novel iterative global energy minimiza-
tion method, which provably determines the optimal image
regions close to global optimality. The method exploits
the inherent property of superadditivity of the set energy
function, which is established via the set-packing polytope.
Intuitively, the property of superadditivity means that a
deformable shape model cannot fit better to an image region
than it fits to any of its sub-regions. Thus, it is not necessary
to consider all possible image regions for optimization. In-
stead, the proposed energy minimization method considers

image regions in order of increasing size and leverages
superadditivity to exclude regions corresponding to falsely
merged objects using a fine-to-coarse scheme. This improves
the computational efficiency, since when excluding a region,
all its supersets are also excluded. We have also described a
coarse-to-fine region analysis scheme, which determines the
universe of atomic image regions used as input for global
energy minimization. In addition, we have derived a closed-
form solution of the proposed global energy minimization
based on the superadditivity property for non-clustered cell
nuclei, which further accelerates the computation.

The regularization parameter α of the convex energy is
used to control the shape variability of the deformable shape
models. An extended set energy function has been introduced
to avoid over-segmentation, which uses the hyperparam-
eter β defining the maximum allowed energy difference
for merging two image regions (i.e. two deformable shape
models that are fitted in these regions). Our approach auto-
matically determines scale-related hyperparameters based
on scale estimation. The objective function of our global
energy minimization method corresponds to a min-weight
set-cover problem, which is NP-hard to compute. We have
thus used a fast approximation algorithm, which determines
a solution close to global optimality. In addition, the design
of the algorithm directly addresses the false splits and false
merges possibly introduced by using an approximation.
We have performed an analysis of global optimality and
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found that the global solution was exactly determined in at
least 92.1% of our experiments, the average approximation
ratio of the solution was at least 99.7%, and the median
was 100.0%. To compute the set energy function, we have
used a fast numerical second-order method which directly
determines global solutions by convex energy minimization.

We have applied our approach to a wide range of 348
fluorescence microscopy images of five different cell types
comprising 5593 cell nuclei, and performed a quantitative
comparison with previous methods. It turned out that our
approach generally demonstrates the best or second-best
cluster splitting performance. The segmentation accuracy is
better compared to previous methods according to region-
based measures, and is competitive according to contour-
based measures. For the region-based SEG performance
measure used in the cell segmentation benchmark [58],
which is the best suited measure for overall segmentation
performance (since it incorporates both detection and object-
based segmentation performance), our approach generally
yields superior results for all datasets. Our approach is ro-
bust since it achieves competitive or improved results even
when using a fixed set of hyperparameters for all datasets,
compared to nine state-of-the-art methods comprising those
which previously achieved best results on the respective
datasets. In addition, we have demonstrated that our ap-
proach can be generalized to other imaging modalities.

Future work will be concerned with the development
of a modality-agnostic segmentation method. Other work
will be on improved scale estimation and incorporation of
higher-level image features (e.g., information from other
image channels). In addition, the derivation of even tighter
energy bounds to further accelerate the global energy mini-
mization and a study of other optimization methods will be
subject of future work.
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